terça-feira, 1 de setembro de 2020



A TEMPERATURA QUE ALTERA AS VIBRAÇÕES E OS FLUXOS DAS ENERGIAS, DIMENSÕES E FENÔMENOS TAMBÉM ALTERA OS SPINS, MOMENTUNS, MOMENTUNS MAGNÉTICOS, E OUTROS.

CONDE COM ISTO SE TEM NOVOS NÚMEROS QUÂNTICO DE GRACELI [TEMPERATURA, VIBRAÇÕES, E FLUXOS VARIACIONAIS.]

ONDE SE FORMA UMA NOVA FÍSICA QUÂNTICA, DE CONDUTIVIDADE, ELÉTRICA,  MAGNÉTICA, ELETROMAGNÉTICA, MODELO PADRÃO, SIMETRIAS, DINÂMICAS, E MECÂNICAS.

COM AÇÃO E VARIAÇÕES SOBRE A QUÍMICA, A FÍSICA, RELATIVIDADES,  E OUTROS.


OU SEJA, UM SISTEMA GENERALIZADO VARIACIONAL SOBRE TODAS AS FÍSICAS, QUÍMICAS,E BIOLOGIA MOLECULAR, E SUAS RAMIFICAÇÕES.


sexta-feira, 21 de agosto de 2020

MECÂNICA TÉRMICA QUÂNTICA GRACELI, E GENERALIZADA [AMPLIADA PARA TODOS OS RAMOS DA FÍSICA, QUÍMICA, E BIOLOGIA MOLECULAR..
TEORIA VIBRACIONAL QUÂNTICA GRACELI.

CONFORME AUMENTA A TEMPERATURA, TAMBÉM APROXIMADAMENTE AUMENTA A DILATAÇÃO [CONFORME OS MATERIAIS DENTRO DO SISTEMA SDCTIE GRACELI] COM ISTO AUMENTA AS VIBRAÇÕES, SPINS, NÚMEROS QUÂNTICO DE GRACELI, ESTRUTURA ELETRÕNICA, E ESTADOS QUÂNTICO, COM ISTO SE TEM UM SISTEMA VARIACIONAL EM TODAS AS TEORIAS E PRINCÍPIOS, E FUNDAMENTOS  ENVOLVENDO MODELO ATÕMICO, QUÍMICA QUÂNTICA, E TODA A MECÂNICA QUÂNTICA, COMO E ENTRE TANTAS  TEORIAS COM A INCERTEZA, EXCLUSÃO, ÁTOMO DE BOHR E OUTROS,  EQUAÇÕES DA PRIMEIRA E SEGUNDA TEORIA QUÂNTICA, COOMO TAMBÉM TODA TEORIA ENVOLVENDO A TERCEIRA TEORIA QUANTICA SDCTIE GRACELI.


OU SEJA, SE TEM UMA TEORIA E MECÂNICA QUÂNTICA  VARIACIONAL CONFORME SE ENCONTRA EM ÍNDICES E TIPOS DE INTENSIDADES DE TEMPERATURA.


O MESMO ACONTECE PARA A ELETROSTÁTICA, ELETROMAGNETISMO, TEORIA DE PARTÍCULAS, GAUGE, SIMETRIAS, PARIDADES, MODELO PADRÃO TÉRMICO, E OUTROS.


VEJAMOS EM:



TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]




Na física quântica, a amplitude de dispersão é a amplitude de probabilidade da saída onda esférica[1] em relação à onda plana de entrada no processo de dispersão do estado estacionário[2] .
Este processo de dispersão é descrito pela seguinte função de onda

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde  é o vetor de posição;  é a onda plana de entrada com o número de onda k ao longo do eixo z é a onda esférica de saída; θé o ângulo de dispersão; e  é a amplitude de espalhamento. A dimensão da amplitude de dispersão é o comprimento.

A amplitude de dispersão é uma amplitude de probabilidade; a secção transversal do diferencial como uma função de ângulo de dispersão é dado como o seu módulo quadrado[3],

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS







equação da onda é uma equação diferencial parcial linear de segunda ordem importante que descreve a propagação das ondas – tais como ocorrem na física – tais como ondas sonorasluminosas ou aquáticas. Ela surge em áreas como a acústicaeletromagnetismo, e dinâmica dos fluidos. Historicamente, o problema de uma corda vibrante como as de um instrumento musical foi estudado por Jean le Rond d'AlembertLeonhard EulerDaniel Bernoulli, e Joseph-Louis Lagrange.[1][2][3][4]
Um pulso viajando através de uma corda com extremidades fixas, como modelado pela equação de onda.


Introdução[editar | editar código-fonte]



Equações de onda são exemplos de equações diferenciais parciais hiperbólicas, mas existem muitas variações.
Na sua forma mais simples, a equação de onda diz respeito a uma variável de tempo t, uma ou mais variáveis ​​espaciais x1x2, …, xn, e uma função escalar u = u (x1x2, …, xnt), cujos valores poderiam modelar o deslocamento de uma onda. A equação de onda para u é:
onde ∇2 é o (espacial) Laplaciano e onde c é uma constante fixa.

A equação sozinha não especifica uma solução, uma solução única é normalmente obtida pela fixação de um problema com outras condições, tais como condições iniciais, que prescrevem o valor e a velocidade da onda. Outra classe importante de problemas especifica as condições de contorno, para as quais as soluções representam ondas estacionárias, ou harmônicos, análogos aos harmônicos de instrumentos musicais.
Para modelos de fenômenos de onda dispersivos, aqueles em que a velocidade de propagação da onda varia com a frequência da onda, a constante c passa a ter a velocidade de fase:
A equação da onda elástica em três dimensões descreve a propagação de ondas em meio elástico isotrópico homogêneo. A maioria dos materiais sólidos são elásticos, por isso esta equação descreve fenômenos como as ondas sísmicas na Terra e as ondas de ultra-som usados ​​para detectar falhas em materiais. Enquanto linear, esta equação tem uma forma mais complexa do que as equações acima, como deve contabilizar movimento tanto longitudinal e transversal:
em que: λ e μ são os chamados parâmetros Lamé descrevendo as propriedades elásticas do meio, ρ é a densidade, f é a função fonte (força motriz), e u é o vetor de deslocamento.
Nota-se que nesta equação, tanto a força quanto o deslocamento são grandezas vetorias . Assim, esta equação é conhecida como a equação de onda do vetor.
Variações da equação de onda também são encontrados na mecânica quânticafísica de plasma e relatividade geral.
Soluções desta equação que são inicialmente zero, fora de alguma região restrita, propagar-se-ão na região a uma velocidade fixa em todas as direções espaciais, assim como ondas físicas a partir de uma perturbação localizada, a constante c é identificada com a velocidade de propagação da onda. Esta equação é linear, da mesma forma que a soma de quaisquer duas soluções é novamente uma solução: na física esta propriedade é chamada princípio da superposição.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS





Faixas dos parâmetros do plasma[editar | editar código-fonte]

Os parâmetros do plasma podem assumir valores que variam em muitas ordens de grandeza, mas as propriedades dos plasmas com parâmetros aparentemente distintos podem ser muito similares. O quadro a seguir considera apenas plasmas atômicos convencionais e não fenômenos exóticos como os plasmas de quarks-glúons.
Faixas dos plasmas. A densidade aumenta para cima, a temperatura aumenta para a direita. Os elétrons livres em um metal podem ser considerados um plasma de elétrons.[16]
Faixas típicas dos parâmetros do plasma: ordens de grandeza (OG)
CaracterísticasPlasmas terrestresPlasmas cósmicos
Comprimento
em metros
10−6 m (plasma de laboratório) até
102 m (raio) (~8 OG)
10−6 m (bainhas de nave espacial) até
1025 m (nebulosa intergaláctica) (~31 OG)
Tempo de vida
em segundos
10−12 s (plasma produzido por laser) até
107 s (luzes fluorescentes) (~19 OG)
101 s (chama solar) até
1017 s (plasma intergaláctico) (~16 OG)
Densidade
em partículas por
metro cúbico
107 m−3 até
1032 m−3 (plasma em confinamento inercial)
1 m−3 (meio intergaláctico) até
1030 m−3 (núcleo estelar)
Temperatura
em kelvins
~0 K (plasma cristalino não neutro[17]) até
108 K (plasma de fusão magnética)
102 K (aurora) até
107 K (núcleo solar)
Campos magnéticos
em teslas
10−4 T (plasma de laboratório) até
103 T (plasma de pulso)
10−12 T (meio intergaláctico) até
1011 T (perto de estrelas de nêutrons)



X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS







Potenciais[editar | editar código-fonte]

raio é um exemplo de plasma presente na superfície da Terra. Tipicamente, um raio descarrega 30.000 amperes a até 100 milhões de volts e emite luz, ondas de rádio, raios X e até raios gama.[19] As temperaturas do plasma num raio podem atingir ~28.000 kelvin e as densidades de elétrons podem exceder 1024 m−3.
Como os plasmas são muito bons condutores, os potenciais elétricos têm um papel importante. O potencial médio que existe no espaço entre partículas carregadas, independentemente da questão de como ele pode ser medido, é chamado de "potencial de plasma" ou "potencial do espaço". Se um eletrodo é inserido em um plasma, o seu potencial em geral ficará consideravelmente abaixo do potencial do plasma, devido à chamada bainha de Debye. A boa condutividade elétrica dos plasmas faz com que os seus campos elétricos sejam muito pequenos. Disso resulta o importante conceito de "quase neutralidade", que diz que a densidade das cargas negativas é aproximadamente igual à das cargas positivas para grandes volumes de plasma (ne = <Z>ni), mas na escala do comprimento de Debye pode haver desequilíbrio de cargas. No caso especial em que camadas duplas são formadas, a separação das cargas pode se estender por algumas dezenas de comprimentos de Debye.
A magnitude dos potenciais e campos elétricos pode ser determinada por outros meios do que simplesmente encontrando-se a densidade de carga resultante. Um exemplo comum é assumir que os elétrons satisfazem a relação de Boltzmann:
.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Diferenciando-se esta relação, obtém-se um meio para calcular o campo elétrico a partir da densidade:
.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


É possível produzir um plasma que não seja quase neutro. Um feixe de elétrons, por exemplo, só tem cargas negativas. A densidade de um plasma não neutro deve geralmente ser muito baixa, pois de outra forma ele será dissipado pela força eletrostática de repulsão.
Em plasmas astrofísicos, a triagem Debye (atenuação do campo elétrico provocada pela presença de portadores de carga móveis) impede que os campos elétricos afetem diretamente o plasma por grandes distâncias, isto é, maiores do que o comprimento de Debye. Mas a existência de partículas carregadas faz com que o plasma gere e seja afetado por campos magnéticos. Isto pode causar (e efetivamente causa) um comportamento extremamente complexo, como a geração de camadas duplas no plasma, um objeto que separa as cargas por algumas dezenas de comprimentos de Debye. A dinâmica de plasmas interagindo com campos magnéticos externos e auto-gerados é estudada na disciplina acadêmica de magnetoidrodinâmica.






Análise modal é o estudo das propriedades dinâmicas sob excitação por vibrações.[1]
Corresponde a análise modal o campo de medições e a análise da resposta da dinâmica estrutural ou de fluidos quanto excitados em todo o espectro de frequência. Como resultado obtemos as frequências naturais da estrutura e seus modos (formas assumidas pela estrututra em cada uma das frequências naturais). A resposta dinâmica de uma estrutura excitada por uma força externa é comumente chamada de resposta forçada. São exemplos a medição das vibrações de um carro quando ligado a um agitador eletromagnético, ou o padrão de ruídos quando excitado por um auto-falante.
Atualmente, sistemas de testes modais são compostos por transdutores, ou vibrômetros a laser, um conversor analógico-digital e um computador são usados para ver os dados e analisá-los.
Antes isso era feito com um sinal de entrada (uma única excitação) e varios pontos de saída eram analisados. No passado um martelo de análise, usando um acelerômetro fixo e um martelo deslizante como excitador, foi capaz de dar multiplos sinais de entrada e um único ponto de resposta. Recentemente, tornou-se possível trabalhar com múltiplas entradas e múltiplas saída onde uma análise com coerência parcial foi capaz de identificar qual parte da resposta vêm de qual fonte de excitação.
análise de sinais baseia-se principalmente na análise de Fourier. O resultado no caso é uma função transferência que mostra uma ou mais ressonâncias, cujas características massa, frequência e amortecimento podem ser estimados a partir das medições.
Os resultados também podem ser usados ​​para correlacionar com soluções de método de análise de elementos finitos.


Vibração não forçada e sem amortecimento[editar | editar código-fonte]


Considere um sistema com n graus de liberdade, não excitado e sem amortecimento. A equação que governa o movimento[2] será:
Onde  é a matriz das massas,  é a matriz dos coeficientes de rigidez do sistema e  é o vetor posição dos graus de liberdade em função do tempo.
Com o propósito de simplificar esta equação, utiliza-se da propriedade de diagonalização de matrizes. Para isso, faz-se necessário encontrar as frequências naturais de vibração e os vetores modais.
Assumindo que , é possível substituir na equação de movimento de modo que
Definindo , chamada matriz dinâmica do sistema, e  a equação acima torna-se um problema de autovalores e autovetores, de modo que  são os autovalores da matriz dinâmica do sistema. Tendo em mãos as frequências naturais de vibração, a matriz  será a matriz do autovetores associados às frequências naturais, a qual diagonaliza  e .
Definindo  como a matriz diagonal contendo como elementos  determinados a partir de . É possível expressar .
Fazendo , a equação do movimento do sistema se torna
Multiplicando pela inversa de 
Devido ao fato de a matriz  não ser uma matriz singular, então temos a equação de movimento resume-se a


X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS





Anéis de Newton (em homenagem a Isaac Newton) são um padrão de franjas concêntricas circulares claras e escuras ou franjas concêntricas circulares nas cores do arco-íris produzidas por interferência na camada fina de ar entre duas superfícies reflexivas adjacentes.


Experimento[editar | editar código-fonte]

Anéis de Newton oriundos da incidência de luz monocromática vermelha (650nm) em um experimento semelhante ao descrito ao lado.
Quando posicionamos uma lente plano-convexa sobre uma placa lisa de vidro, forma-se entre as duas superfícies uma lâmina de ar de espessura variável. No ponto de contato entre ambas superfícies, a espessura da camada de ar é zero e aumenta em direção às bordas da lente convexa. Ao incidirmos uma luz monocromática sobre o arranjo descrito, podemos observar por meio da luz refletida e transmitida um padrão de franjas de interferência composto por uma série de anéis concêntricos, alternadamente claros e escuros, ao redor do ponto de contato, os Anéis de Newton.[1]
Essas franjas circulares foram primeiramente observadas por Robert Boyle, em 1663, e por Robert Hooke, que as destacou em seu livroMicrographia, em 1665. Os estudos de Boyle e de Hooke impulsionaram Isaac Newton, em 1666, a estudar o fenômeno de interferência que ocorria em filmes finos. Newton foi, então, o responsável por utilizar a teoria ondulatória para explicar esse fenômeno, determinando com grande precisão os raios dos anéis, a espessura da camada onde se formam e os comprimentos de onda da luz.[2]
Quando observadas utilizando uma luz branca, as franjas dão origem a um padrão concêntrico de anéis das cores do arco-íris, isso porque os comprimentos de onda dos diferentes espectros da luz interferem em espessuras diferentes na camada de ar entre as superfícies.

Teoria[editar | editar código-fonte]

Arranjo composto por uma lente plano-convexa e por uma superfície de vidro lisa, separadas por uma lâmina de ar com espessura variável(filme fino).
O raio luminoso incidente chega à superfície da lente convexa, onde parte da luz é refletida e parte é refratada. O raio 2,refletido, não causa uma mudança de fase, isso porque a luz passa de um meio com índice de refração maior para um índice de refração menor, no caso da lente para o ar. Já o raio 1, refratado, causa uma mudança de fase de 180° ou λ/2, pois passa de um meio com índice refração menor para outro com índice de refração maior, isto é, do ar para o vidro. Esses raios causarão uma interferência construtiva (anéis claros) se 2L = (m+1/2).λ ou uma interferência destrutiva (anéis escuros) se 2L=m.λ, com m= 0,1,2,3...[3]
Para ambas equações, temos 2L como a diferença de caminho percorrida pela onda, sendo L a espessura do filme fino, e o comprimento λ referido é o comprimento da onda no filme fino, nesse caso o ar, com n=1.
O ponto central é escuro justamente porque a diferença de caminho é igual a zero, e temos apenas uma mudança de fase de 0,5λ devido à reflexão.

Raio dos Anéis de Newton[editar | editar código-fonte]

Por geometria, podemos obter os raios dos anéis claros e escuros em função do comprimento de onda da luz e também do raio de curvatura de lente convexa.
Expgeonewtonsrings.jpeg
À medida que nos afastamos do ponto central, a diferença de caminho deixa de ser zero e podemos observar o padrão alternado de anéis claros e escuros. Para tanto, consideraremos a espessura do filme fino como L, o índice de refração do ar igual a 1, o raio de curvatura R da lente convexa e r o raio dos anéis.
Por geometria, sabemos que:[4]
BD X BE = AB X BC
BD = BE= r, AB = L, BC= 2R-L
r x r = L(2R-L)
r²= 2RL - L²
Como L é muito menor que R, podemos desconsiderar o L², logo:
r²= 2RL
Para interferência construtiva, temos 2L= (m+1/2)λ. Para o primeiro anel claro ou primeiro máximo, temos m=0, para o segundo máximo, m=1. De forma semelhante, podemos generalizar para o enésimo máximo usando m= N-1. Substituindo o m na fórmula da interferência construtiva, obtemos: 2L= (N-1+1/2)λ
Então L=1/2(N-1/2)λ
Voltando para a fórmula que nos dá finalmente o raio do enésimo anel claro:
r²=2.R.λ.1/2(N-1/2)
[5]
Analogamente, podemos obter a fórmula para o enésimo anel escuro.

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS